Copied to
clipboard

G = C42.118D10order 320 = 26·5

118th non-split extension by C42 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.118D10, C10.632- 1+4, C10.232+ 1+4, (C4×D4)⋊26D5, (D4×C20)⋊28C2, C4⋊C4.288D10, D10⋊Q89C2, (C2×D4).225D10, C422D511C2, C20.6Q826C2, (C22×C4).49D10, C20.48D413C2, (C2×C10).108C24, (C2×C20).166C23, (C4×C20).220C22, C22⋊C4.120D10, Dic5.Q88C2, Dic5⋊D4.4C2, C22.7(C4○D20), C22.D207C2, C4⋊Dic5.41C22, D10.12D410C2, C2.25(D46D10), (D4×C10).309C22, C23.D1010C2, C23.23D105C2, (C2×Dic5).48C23, C10.D4.8C22, (C22×D5).42C23, C22.133(C23×D5), C23.105(C22×D5), Dic5.14D410C2, C23.D5.17C22, D10⋊C4.67C22, C23.18D1019C2, (C22×C20).366C22, (C22×C10).178C23, C52(C22.33C24), (C4×Dic5).227C22, (C2×Dic10).31C22, C2.20(D4.10D10), (C22×Dic5).100C22, (C4×C5⋊D4)⋊47C2, C10.50(C2×C4○D4), C2.57(C2×C4○D20), (C2×C4×D5).255C22, (C2×C10).18(C4○D4), (C2×C10.D4)⋊39C2, (C5×C4⋊C4).336C22, (C2×C4).164(C22×D5), (C2×C5⋊D4).125C22, (C5×C22⋊C4).107C22, SmallGroup(320,1236)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.118D10
C1C5C10C2×C10C22×D5C2×C5⋊D4C4×C5⋊D4 — C42.118D10
C5C2×C10 — C42.118D10
C1C22C4×D4

Generators and relations for C42.118D10
 G = < a,b,c,d | a4=b4=c10=1, d2=a2, ab=ba, cac-1=a-1, dad-1=a-1b2, cbc-1=a2b, dbd-1=b-1, dcd-1=a2c-1 >

Subgroups: 718 in 218 conjugacy classes, 95 normal (91 characteristic)
C1, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, D4, Q8, C23, C23, D5, C10, C10, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, Dic5, C20, D10, C2×C10, C2×C10, C2×C10, C2×C4⋊C4, C4×D4, C4×D4, C4⋊D4, C22⋊Q8, C22.D4, C42.C2, C422C2, Dic10, C4×D5, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C5×D4, C22×D5, C22×C10, C22.33C24, C4×Dic5, C10.D4, C4⋊Dic5, D10⋊C4, C23.D5, C4×C20, C5×C22⋊C4, C5×C4⋊C4, C2×Dic10, C2×C4×D5, C22×Dic5, C2×C5⋊D4, C22×C20, D4×C10, C20.6Q8, C422D5, Dic5.14D4, C23.D10, D10.12D4, C22.D20, Dic5.Q8, D10⋊Q8, C2×C10.D4, C20.48D4, C4×C5⋊D4, C23.23D10, C23.18D10, Dic5⋊D4, D4×C20, C42.118D10
Quotients: C1, C2, C22, C23, D5, C4○D4, C24, D10, C2×C4○D4, 2+ 1+4, 2- 1+4, C22×D5, C22.33C24, C4○D20, C23×D5, C2×C4○D20, D46D10, D4.10D10, C42.118D10

Smallest permutation representation of C42.118D10
On 160 points
Generators in S160
(1 138 123 27)(2 28 124 139)(3 140 125 29)(4 30 126 131)(5 132 127 21)(6 22 128 133)(7 134 129 23)(8 24 130 135)(9 136 121 25)(10 26 122 137)(11 74 85 119)(12 120 86 75)(13 76 87 111)(14 112 88 77)(15 78 89 113)(16 114 90 79)(17 80 81 115)(18 116 82 71)(19 72 83 117)(20 118 84 73)(31 157 142 46)(32 47 143 158)(33 159 144 48)(34 49 145 160)(35 151 146 50)(36 41 147 152)(37 153 148 42)(38 43 149 154)(39 155 150 44)(40 45 141 156)(51 66 96 101)(52 102 97 67)(53 68 98 103)(54 104 99 69)(55 70 100 105)(56 106 91 61)(57 62 92 107)(58 108 93 63)(59 64 94 109)(60 110 95 65)
(1 86 60 42)(2 13 51 154)(3 88 52 44)(4 15 53 156)(5 90 54 46)(6 17 55 158)(7 82 56 48)(8 19 57 160)(9 84 58 50)(10 11 59 152)(12 95 153 123)(14 97 155 125)(16 99 157 127)(18 91 159 129)(20 93 151 121)(21 114 69 142)(22 80 70 32)(23 116 61 144)(24 72 62 34)(25 118 63 146)(26 74 64 36)(27 120 65 148)(28 76 66 38)(29 112 67 150)(30 78 68 40)(31 132 79 104)(33 134 71 106)(35 136 73 108)(37 138 75 110)(39 140 77 102)(41 122 85 94)(43 124 87 96)(45 126 89 98)(47 128 81 100)(49 130 83 92)(101 149 139 111)(103 141 131 113)(105 143 133 115)(107 145 135 117)(109 147 137 119)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 10 123 122)(2 121 124 9)(3 8 125 130)(4 129 126 7)(5 6 127 128)(11 153 85 42)(12 41 86 152)(13 151 87 50)(14 49 88 160)(15 159 89 48)(16 47 90 158)(17 157 81 46)(18 45 82 156)(19 155 83 44)(20 43 84 154)(21 70 132 105)(22 104 133 69)(23 68 134 103)(24 102 135 67)(25 66 136 101)(26 110 137 65)(27 64 138 109)(28 108 139 63)(29 62 140 107)(30 106 131 61)(31 143 142 32)(33 141 144 40)(34 39 145 150)(35 149 146 38)(36 37 147 148)(51 93 96 58)(52 57 97 92)(53 91 98 56)(54 55 99 100)(59 95 94 60)(71 113 116 78)(72 77 117 112)(73 111 118 76)(74 75 119 120)(79 115 114 80)

G:=sub<Sym(160)| (1,138,123,27)(2,28,124,139)(3,140,125,29)(4,30,126,131)(5,132,127,21)(6,22,128,133)(7,134,129,23)(8,24,130,135)(9,136,121,25)(10,26,122,137)(11,74,85,119)(12,120,86,75)(13,76,87,111)(14,112,88,77)(15,78,89,113)(16,114,90,79)(17,80,81,115)(18,116,82,71)(19,72,83,117)(20,118,84,73)(31,157,142,46)(32,47,143,158)(33,159,144,48)(34,49,145,160)(35,151,146,50)(36,41,147,152)(37,153,148,42)(38,43,149,154)(39,155,150,44)(40,45,141,156)(51,66,96,101)(52,102,97,67)(53,68,98,103)(54,104,99,69)(55,70,100,105)(56,106,91,61)(57,62,92,107)(58,108,93,63)(59,64,94,109)(60,110,95,65), (1,86,60,42)(2,13,51,154)(3,88,52,44)(4,15,53,156)(5,90,54,46)(6,17,55,158)(7,82,56,48)(8,19,57,160)(9,84,58,50)(10,11,59,152)(12,95,153,123)(14,97,155,125)(16,99,157,127)(18,91,159,129)(20,93,151,121)(21,114,69,142)(22,80,70,32)(23,116,61,144)(24,72,62,34)(25,118,63,146)(26,74,64,36)(27,120,65,148)(28,76,66,38)(29,112,67,150)(30,78,68,40)(31,132,79,104)(33,134,71,106)(35,136,73,108)(37,138,75,110)(39,140,77,102)(41,122,85,94)(43,124,87,96)(45,126,89,98)(47,128,81,100)(49,130,83,92)(101,149,139,111)(103,141,131,113)(105,143,133,115)(107,145,135,117)(109,147,137,119), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,10,123,122)(2,121,124,9)(3,8,125,130)(4,129,126,7)(5,6,127,128)(11,153,85,42)(12,41,86,152)(13,151,87,50)(14,49,88,160)(15,159,89,48)(16,47,90,158)(17,157,81,46)(18,45,82,156)(19,155,83,44)(20,43,84,154)(21,70,132,105)(22,104,133,69)(23,68,134,103)(24,102,135,67)(25,66,136,101)(26,110,137,65)(27,64,138,109)(28,108,139,63)(29,62,140,107)(30,106,131,61)(31,143,142,32)(33,141,144,40)(34,39,145,150)(35,149,146,38)(36,37,147,148)(51,93,96,58)(52,57,97,92)(53,91,98,56)(54,55,99,100)(59,95,94,60)(71,113,116,78)(72,77,117,112)(73,111,118,76)(74,75,119,120)(79,115,114,80)>;

G:=Group( (1,138,123,27)(2,28,124,139)(3,140,125,29)(4,30,126,131)(5,132,127,21)(6,22,128,133)(7,134,129,23)(8,24,130,135)(9,136,121,25)(10,26,122,137)(11,74,85,119)(12,120,86,75)(13,76,87,111)(14,112,88,77)(15,78,89,113)(16,114,90,79)(17,80,81,115)(18,116,82,71)(19,72,83,117)(20,118,84,73)(31,157,142,46)(32,47,143,158)(33,159,144,48)(34,49,145,160)(35,151,146,50)(36,41,147,152)(37,153,148,42)(38,43,149,154)(39,155,150,44)(40,45,141,156)(51,66,96,101)(52,102,97,67)(53,68,98,103)(54,104,99,69)(55,70,100,105)(56,106,91,61)(57,62,92,107)(58,108,93,63)(59,64,94,109)(60,110,95,65), (1,86,60,42)(2,13,51,154)(3,88,52,44)(4,15,53,156)(5,90,54,46)(6,17,55,158)(7,82,56,48)(8,19,57,160)(9,84,58,50)(10,11,59,152)(12,95,153,123)(14,97,155,125)(16,99,157,127)(18,91,159,129)(20,93,151,121)(21,114,69,142)(22,80,70,32)(23,116,61,144)(24,72,62,34)(25,118,63,146)(26,74,64,36)(27,120,65,148)(28,76,66,38)(29,112,67,150)(30,78,68,40)(31,132,79,104)(33,134,71,106)(35,136,73,108)(37,138,75,110)(39,140,77,102)(41,122,85,94)(43,124,87,96)(45,126,89,98)(47,128,81,100)(49,130,83,92)(101,149,139,111)(103,141,131,113)(105,143,133,115)(107,145,135,117)(109,147,137,119), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,10,123,122)(2,121,124,9)(3,8,125,130)(4,129,126,7)(5,6,127,128)(11,153,85,42)(12,41,86,152)(13,151,87,50)(14,49,88,160)(15,159,89,48)(16,47,90,158)(17,157,81,46)(18,45,82,156)(19,155,83,44)(20,43,84,154)(21,70,132,105)(22,104,133,69)(23,68,134,103)(24,102,135,67)(25,66,136,101)(26,110,137,65)(27,64,138,109)(28,108,139,63)(29,62,140,107)(30,106,131,61)(31,143,142,32)(33,141,144,40)(34,39,145,150)(35,149,146,38)(36,37,147,148)(51,93,96,58)(52,57,97,92)(53,91,98,56)(54,55,99,100)(59,95,94,60)(71,113,116,78)(72,77,117,112)(73,111,118,76)(74,75,119,120)(79,115,114,80) );

G=PermutationGroup([[(1,138,123,27),(2,28,124,139),(3,140,125,29),(4,30,126,131),(5,132,127,21),(6,22,128,133),(7,134,129,23),(8,24,130,135),(9,136,121,25),(10,26,122,137),(11,74,85,119),(12,120,86,75),(13,76,87,111),(14,112,88,77),(15,78,89,113),(16,114,90,79),(17,80,81,115),(18,116,82,71),(19,72,83,117),(20,118,84,73),(31,157,142,46),(32,47,143,158),(33,159,144,48),(34,49,145,160),(35,151,146,50),(36,41,147,152),(37,153,148,42),(38,43,149,154),(39,155,150,44),(40,45,141,156),(51,66,96,101),(52,102,97,67),(53,68,98,103),(54,104,99,69),(55,70,100,105),(56,106,91,61),(57,62,92,107),(58,108,93,63),(59,64,94,109),(60,110,95,65)], [(1,86,60,42),(2,13,51,154),(3,88,52,44),(4,15,53,156),(5,90,54,46),(6,17,55,158),(7,82,56,48),(8,19,57,160),(9,84,58,50),(10,11,59,152),(12,95,153,123),(14,97,155,125),(16,99,157,127),(18,91,159,129),(20,93,151,121),(21,114,69,142),(22,80,70,32),(23,116,61,144),(24,72,62,34),(25,118,63,146),(26,74,64,36),(27,120,65,148),(28,76,66,38),(29,112,67,150),(30,78,68,40),(31,132,79,104),(33,134,71,106),(35,136,73,108),(37,138,75,110),(39,140,77,102),(41,122,85,94),(43,124,87,96),(45,126,89,98),(47,128,81,100),(49,130,83,92),(101,149,139,111),(103,141,131,113),(105,143,133,115),(107,145,135,117),(109,147,137,119)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,10,123,122),(2,121,124,9),(3,8,125,130),(4,129,126,7),(5,6,127,128),(11,153,85,42),(12,41,86,152),(13,151,87,50),(14,49,88,160),(15,159,89,48),(16,47,90,158),(17,157,81,46),(18,45,82,156),(19,155,83,44),(20,43,84,154),(21,70,132,105),(22,104,133,69),(23,68,134,103),(24,102,135,67),(25,66,136,101),(26,110,137,65),(27,64,138,109),(28,108,139,63),(29,62,140,107),(30,106,131,61),(31,143,142,32),(33,141,144,40),(34,39,145,150),(35,149,146,38),(36,37,147,148),(51,93,96,58),(52,57,97,92),(53,91,98,56),(54,55,99,100),(59,95,94,60),(71,113,116,78),(72,77,117,112),(73,111,118,76),(74,75,119,120),(79,115,114,80)]])

62 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H···4N5A5B10A···10F10G···10N20A···20H20I···20X
order1222222244444444···45510···1010···1020···2020···20
size111122420222244420···20222···24···42···24···4

62 irreducible representations

dim1111111111111111222222224444
type+++++++++++++++++++++++--
imageC1C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2D5C4○D4D10D10D10D10D10C4○D202+ 1+42- 1+4D46D10D4.10D10
kernelC42.118D10C20.6Q8C422D5Dic5.14D4C23.D10D10.12D4C22.D20Dic5.Q8D10⋊Q8C2×C10.D4C20.48D4C4×C5⋊D4C23.23D10C23.18D10Dic5⋊D4D4×C20C4×D4C2×C10C42C22⋊C4C4⋊C4C22×C4C2×D4C22C10C10C2C2
# reps11111111111111112424242161144

Matrix representation of C42.118D10 in GL6(𝔽41)

010000
100000
0040161833
001734033
000251825
0024302831
,
0320000
3200000
00203713
0028301528
001515110
002033439
,
100000
010000
001126284
001515370
00260815
003026167
,
100000
0400000
0024161317
00193444
001825337
0014302532

G:=sub<GL(6,GF(41))| [0,1,0,0,0,0,1,0,0,0,0,0,0,0,40,17,0,24,0,0,16,34,25,30,0,0,18,0,18,28,0,0,33,33,25,31],[0,32,0,0,0,0,32,0,0,0,0,0,0,0,2,28,15,20,0,0,0,30,15,33,0,0,37,15,11,4,0,0,13,28,0,39],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,11,15,26,30,0,0,26,15,0,26,0,0,28,37,8,16,0,0,4,0,15,7],[1,0,0,0,0,0,0,40,0,0,0,0,0,0,24,19,18,14,0,0,16,34,25,30,0,0,13,4,33,25,0,0,17,4,7,32] >;

C42.118D10 in GAP, Magma, Sage, TeX

C_4^2._{118}D_{10}
% in TeX

G:=Group("C4^2.118D10");
// GroupNames label

G:=SmallGroup(320,1236);
// by ID

G=gap.SmallGroup(320,1236);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,477,100,675,570,297,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^10=1,d^2=a^2,a*b=b*a,c*a*c^-1=a^-1,d*a*d^-1=a^-1*b^2,c*b*c^-1=a^2*b,d*b*d^-1=b^-1,d*c*d^-1=a^2*c^-1>;
// generators/relations

׿
×
𝔽